ear 5 - Mathematics Intent


Christteton Primary School
maths

| Year 5 Maths Long Term Plan |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Autumn | Number and |  | Addition and Subtraction <br> (4 weeks) |  |  | Multiplication and Division multiples, factors, square, cube numbers (2 weeks) | Fractions <br> (3 weeks) |  |
| Spring | Fractions <br> (3 weeks) |  | Measure <br> Converting <br> Units of <br> Time <br> (1 week) | Multiplication and Division formal methods <br> (3 weeks) |  | Decimals and percentages (2 weeks) |  | Perimeter and area <br> (2 weeks) |
| Summer | Statistics <br> (2 weeks) | Geometry <br> Shape <br> (3 weeks) | Geometry <br> Position and Direction (2 weeks) |  | Decimals <br> (3 weeks) | Negative number <br> (1 week) | Measurement <br> Converting <br> units <br> (2 weeks) | Measure ment <br> Volume <br> (1 week) |


| Blocks 1 and 13 |  |  |  |
| :---: | :---: | :---: | :---: |
| Number and Place Value |  |  |  |
| Substantive <br> Knowledge <br> National Curriculum | Ready to Progress | Key Performance Indicators | Sequence of learning <br> Detailed in Planning Overview |
| Read, write, order and compare numbers to at least 1000000 and determine the value of each digit | NPV-2 Recognise the place value of each digit in numbers with up to 2 decimal places, and compose and decompose numbers with up to 2 decimal places using standard and non-standard partitioning. | - Can explain the place value in numbers up to 1 000000 <br> - Can order a set of numbers to 1000000 <br> - Understands how a number can be partitioned into different amounts e.g. 45000 is 45 thousands, 450 hundreds, 4500 tens or 45000 ones. | * Reading, writing and making numbers to a million (place value charts, place value counters, digit cards) *Understanding the size and value of a million (How Big is a Million - Usborne) <br> * Recognise the place value of each digit in a 7digit number <br> *Partition a number up to 1 million in a standard and non standard way <br> * Look at partitioning a number into different |
| Count forwards or backwards in steps of powers of 10 for any given number up to 1 000000 |  | - Can count forwards and backwards in 10s and 100s and explain how to find numbers 10 and 100 bigger or smaller than any number to 1000000 . <br> - Can count forwards and backwards in 1000 s and 10 000s and explain how to find numbers 1000 and 10000 bigger or smaller than any number to 1000000. | amounts - to understand that 45,000 is 450 hundreds or 4500 tens <br> * Look at the impact of adding powers of 10 to a number up to 1,000,000 (with and without crossing boundaries) <br> * Position numbers up to 1 million on a number line with a range of start and ending points - blank and |
| Interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero |  | - Understands how to bridge through zero when counting forwards and backwards with positive and negative numbers <br> - Can solve problems linked to temperature involving negative numbers | called number lines <br> * Order and compare numbers (either by positioning 0 a number line first or by using place value) <br> *Problem solving around ordering and comparing numbers (link to money and measure) |

## Year 5 - Mathematics Intent

| Round any number up to 1000000 to the nearest 10, 100, 1000, 10000 and 100000 | NPV-3 Reason about the location of any number with up to 2 decimals places in the linear number system, including identifying the previous and next multiple of 1 and 0.1 and rounding to the nearest of each. | - Understands the rules for rounding numbers and round any number up to 1000000 to the nearest $10,100,1000,10000$ and 100000 | * Rounding numbers up to 1 million to the nearest 10, 100, 1000, 10,000 and 100,000 (position numbers on a number line, which power of 10 is it closest to? What is the determiner if we are rounding to each power of 10 ?) <br> *Problem solving around rounding <br> * Read and position negative numbers on a number line. |
| :---: | :---: | :---: | :---: |
| Solve number problems and practical problems that involve all of the above |  | - Can solve problems involving place value, including word problems and problems linked to money and measure | * Calculate the difference between a positive and a negative number by bridging back through 0 <br> * Problem solving involving negative numbers <br> *Reading and writing Roman Numerals up to 1000 |
| Read Roman numerals to 1000 (m) and recognise years written in roman numerals. |  | - Can use Roman numerals to 100 to begin to derive Roman numerals to 1000 <br> - Can recognise years written in Roman Numerals |  |


| Block 2 |  |  |  |
| :---: | :---: | :---: | :---: |
| Addition and Subtraction |  |  |  |
| Substantive Knowledge <br> National Curriculum | Ready to Progress | Key Performance Indicators | Sequence of learning <br> Detailed in Planning Overview |
| Add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction) |  | - Can solve THTU + THTU (bridging 10 and 100) <br> - Can solve THTU - THTU (bridging 10 and 100) <br> - Can use a formal written method to add money and measure using decimal notation to tenths <br> - Use a formal written method to add money and measure using decimal notation to hundredths <br> - Use a formal written method to add units of measure using decimal notation to hundredths | Teach mental strategies first <br> * Partitioning to add using place value <br> * Calculate using known facts and scaling ( $3+5=8$ becomes $3000+5000=8000$ or $0.3+0.5=0.8$ ) <br> * Adding 2 numbers by bridging through 10 or a power of 10 <br> * Subtracting numbers by bridging back through 10 or a power of 10 <br> * Add and subtract numbers by bridging multiple times |
| Add and subtract numbers mentally with increasingly large numbers | NF-2 Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 1 tenth or 1 hundredth) | - Can add and subtract increasing large numbers using a variety of strategies <br> - Doubling, Partitioning, Reordering, Bridging through a multiple of 10 <br> - Can add and subtract simple decimals mentally e.g. $0.25+0.5$ | * Subtracting by finding the difference (applying bridging if necessary) <br> *Reordering calculations to look for known facts <br> * Using a bar model or number facts triangle to find fact families for calculations <br> * Checking calculations using the inverse operation <br> * Check calculations by using rounding to estimate the answer to a problem |
| Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy |  | - Can estimate the answer up to 4 digits by rounding | * Using compensating as a strategy to mentally add or subtract numbers <br> * Using adjusting as a strategy to mentally add or subtract numbers |

## Solve addition and

 subtraction multi-step problems in contexts, deciding which operations and methods to use and why- Can use addition and/or subtraction strategies to solve a complex problem
- Use the inverse to check the answer
- Solve problems including those with more than one step
- Solve open-ended investigations using a variety of units of measure
* Formal written strategy for addition
* Formal written strategy for subtraction
* Children reflect on most efficient strategy to use for a range of calculations
* Problem solving using a range of strategies (link
to money and measure)

| Blocks 3 and 7 |  |  |  |
| :---: | :---: | :---: | :---: |
| Multiplication and Division |  |  |  |
| Substantive Knowledge <br> National Curriculum | Ready to Progress | Key Performance Indicators | Sequence of learning <br> Detailed in Planning Overview |
| Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers | MD-2 Find factors and multiples of positive whole numbers, including common factors and common multiples, and express a given number as a product of 2 or 3 factors. | - Can identify multiples of a number <br> - Can systematically find all factor pairs of a 2 digit number <br> - Can identify common factors in two 2 digit numbers <br> - Can explain the relationship between a factor and a multiple | Recap and refresh times tables as starter activities throughout the unit <br> * Revisit arrays, commutative and inverse from the previous curriculum. <br> * Create fact families for known multiplication calculations <br> *Missing box multiplication and division calculations <br> *Multiplying a number by 10, 100 and |
| Know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers |  | - Understands the definition of prime number <br> - Can break a number down into prime factors <br> - Understands the definition of a composite number | 1000 using the concept that numbers get 10, 100 or 1000 times larger and how this looks on a place value chart |

Year 5 - Mathematics Intent

|  |  |  | *Dividing a number by 10, 100 and 1000 |
| :---: | :---: | :---: | :---: |
| Establish whether a number up to 100 is prime and recall prime numbers up to 19 |  | - Can identify prime numbers to 100 <br> - Can recall prime numbers to 19 <br> - Can explain why a number is prime | *Use known facts and scaling to create related facts ( $3 \times 4=12$ so $30 \times 4=$ 120 and $30 \times 40=1200$ or $0.3 \times 0.4$ ) <br> *Create fact families for scaled multiplication calculations |
| Multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for twodigit numbers | MD-3 Multiply any whole number with up to 4 digits by any one-digit number using a formal written method. | - Can use a formal written method to multiply ThHTU by U <br> - Can use a formal written method to multiply TU by TU <br> - Can use a formal written method to multiply HTU by TU <br> - Can use a formal written method to multiply ThHTU by TU | * Reordering Calculations to make multiplying easier <br> * Double and halve relationship in multiplication and division (for example $9 \times 20$ becomes $18 \times 10$ because we can halve one side of the calculation and double the other side) <br> * Partitioning to multiply $234 \times 3$ |
| Multiply and divide numbers mentally drawing upon known facts | NF-1 Secure fluency in multiplication table facts, and corresponding division facts, through continued practice <br> NF-2 Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 1 tenth or 1 hundredth) | - Quickly recall multiplication and division facts to 12 x 12 <br> - Use knowledge of times tables to multiply and divide by multiples of 10 <br> - Use knowledge of times tables to multiply and divide by multiples of 100 <br> - Use knowledge of times tables to multiply and divide by multiples of 1000 <br> - Can multiply multiples of 10 by multiples of 10 <br> - Can multiply multiples of 10 by multiples of 100 <br> - Can use rounding to estimate answers to larger multiplication or division calculations | becomes $200 \times 3,30 \times 3,4 \times 3$ <br> * Partitioning to divide by place value or by multiples ( $72 \div 6$ becomes $60 \div 6$ and $12 \div 6=$ <br> * Using arrays investigate factors <br> * Develop a systematic way of finding <br> all multiples of a number <br> * Investigate common multiples using factors <br> * Build arrays for square numbers and discuss that these have an odd number of factors |


|  | MD-1 Multiply and divide numbers by 10 and 100; understand this as equivalent to making a number 10 or 100 times the size, or 1 tenth or 1 hundredth times the size. | - Can use factors to calculate other multiplication facts e.g. $17 \times 6=17 \times 3 \times 2$ | * Build arrays for prime numbers and establish what makes these numbers prime <br> * Substantial problem involving investigating factors, prime and square numbers such as nRich Abundant Numbers |
| :---: | :---: | :---: | :---: |
| Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context | MD-4 Divide a number with up to 4 digits by a one-digit number using a formal written method, and interpret remainders appropriately for the context. | - Can use a formal written method to divide TU by U <br> - Can use a formal written method to divide HTU by U <br> - Can use a formal written method to divide ThHTU by U <br> - Can explain what a remainder is <br> - Understands the meaning of a remainder in a context and interpret appropriately | practical equipment and relating this to the abstract notation <br> * Formal written strategy for multiplication TO x TO (in line with your school's calculation policy) <br> * Formal written strategy for division HTO $\div \mathrm{O}$ (in line with your school's calculation policy) |
| Multiply and divide whole numbers and those involving decimals by 10, 100 and 1000 |  | - Understand the effect of multiplying by 10,100 and 1000 <br> - Understand the effect of dividing by 10, 100 and 1000 | * Solving problems involving multiplication and division (using mental and written strategies, scaling and simple ratio) |
| Recognise and use square numbers and cube numbers, and the notation for squared <br> ${ }^{(2)}$ and cubed ( ${ }^{(3)}$ |  | - Understand how to square a number and the notation for squared <br> - Can recognise square numbers <br> - Can link knowledge of square numbers to area <br> - Understands how to cube a number and the notation for cubed <br> - Can recognise cube numbers |  |

Year 5 - Mathematics Intent
$\left.\left.\begin{array}{|l|l|l|l|}\hline & & \text { - Can link knowledge of cube numbers to volume } \\ \begin{array}{l}\text { Solve problems involving } \\ \text { multiplication and division } \\ \text { including using their } \\ \text { knowledge of factors and } \\ \text { multiples, squares and cubes }\end{array} & & \begin{array}{c}\text { - Can solve problems that link children's understanding of } \\ \text { prime numbers, composite numbers, factors and } \\ \text { multiples e.g. complete partial multiplication pyramid }\end{array} \\ \text { using knowledge of factors and multiples }\end{array}\right\} \begin{array}{l}\text { - Can solve multiplication and division problems linked to } \\ \text { measurement using children's knowledge of squared }\end{array}\right\}$

| Blocks 4 and 5 |  |  |  |
| :--- | :--- | :---: | :---: |
| Substantive |  | Fractions |  |
| Knowledge | Ready to Progress | Key Performance Indicators | Sequence of learning <br> National Curriculum |


| Compare and order fractions whose denominators are all multiples of the same number |  | - Can convert fractions using multiples to have the same denominator. <br> - Understands the effect of a denominator increasing in multiples. <br> - Compare and order mixed and improper fractions | *Recap the language of fractions and representations of fractions <br> * Use a fractions wall to establish some simple equivalences <br> *Explore the relationships between fractions that are equivalent |
| :---: | :---: | :---: | :---: |
| Identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths | F-2 Find equivalent fractions and understand that they have the same value and the same position in the linear number system. | - Understands that numbers can have a different representation but have generally the same meaning. | *Use multiplication to find a family of equivalent fractions when given a starting fraction <br> Substantial problem -nRich linked chains <br> * Order and compare fractions where the denominators are all multiples of each other - applying equivalent fractions understanding <br> *Calculating non unit fraction of quantities |
| Recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements > 1 as a mixed number |  | - Understands a fraction can be more than one <br> - Understands that when the numerator is more than the denominator it is more than one whole. <br> - Understands fractions can be represented as a mixed number and an improper fraction. | * Explore mixed numbers and improper fractions by continuing a fraction count across 2 fraction walls or a number line that extends beyond 1 (so a count could be one third, two thirds, three thirds, four thirds, five thirds or one third, two thirds, one whole, one whole and one third, one whole and two thirds) <br> *Position mixed numbers and improper fractions on a number line <br> * Look at converting improper fractions to mixed numbers |
| Add and subtract fractions with the same denominator and denominators that are multiples of the same number |  | - Can use common multiples to convert fractions to have the same denominator. <br> - Can add and subtract fractions <br> - Can convert answers using mixed and improper fractions. <br> - Can mentally add and subtract $\frac{1}{10} \mathrm{~s}$ | (using a part whole model initially) <br> *Convert mixed numbers into improper fractions <br> * Add and subtract fractions where denominators are multiples of the same number (applying equivalent fractions understanding) |

## Year 5 - Mathematics Intent

|  |  |  | *Add and subtract fractions where one fraction is a mixed number, and one is an improper fraction <br> *Multiply proper fractions by a whole number using models and images to support (bar modelling) |
| :---: | :---: | :---: | :---: |
| Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams |  | - Can multiply together fractions with common denominators <br> - Can use a number line to represent multiplying a fraction as repeated addition. <br> - Understands when multiplying by a fraction the answer is smaller. |  |
|  | 5F-1 Find non-unit fractions of quantities |  |  |


| Block 6 |  |  |  |
| :---: | :---: | :---: | :---: |
| Measure - Time |  |  |  |
| Substantive Knowledge <br> National Curriculum | Ready to Progress | Key Performance Indicators | Sequence of learning <br> Detailed in Planning Overview |
| Solve problems involving converting between units of time | NPV-5 Convert between units of measure, including using common decimals and fractions. | - Can use all four operations in problems involving time, including conversions | *Discuss units of time and conversions <br> - Years to months/weeks <br> - Weeks to days <br> - Days to hours <br> - Hours to minutes <br> - Minutes to seconds <br> *Children to solve questions around converting units of time using efficient calculation strategies |


| Blocks 8 and 13 |  |  |  |
| :---: | :---: | :---: | :---: |
| Decimals and Percentages |  |  |  |
| Substantive Knowledge National Curriculum | Ready to Progress | Key Performance Indicators | Sequence of learning |
| Read and write decimal numbers as fractions | F-3 Recall decimal fraction equivalents for $\frac{1}{2}, \frac{1}{4}, \frac{1}{5}$, and $\frac{1}{10}$ and for multiples of these proper fractions. | - Can convert decimals to fractions <br> - Can explain the value of each part of a decimal and explain the fraction equivalence. | Recap year 4 decimals unit and look at counting in tenths, hundredths <br> *Using base 10 or bead strings investigate tenths, hundredth and thousandths as a fraction and a decimal ( 1 out of 1000 beads is $1 / 1000$ or 0.001 because we have 1 in the thousandths column <br> *Looking at the powers of 10 with decimals (10 thousandths is 1 hundredth, 100 thousandths is 1 tenth, etc) <br> *Reading, writing, composing, and decomposing numbers up to 3dp using standard and non-standard partitioning <br> *Ordering and comparing numbers up to 3 <br> dp using place value <br> *Positioning decimals to 2 dp on a number line <br> *Rounding decimals with 2 dp to the nearest whole number (application of number line work to aid in visualising which number to round to) <br> * Knowing that 0.5 is 1 half, 0.25 is a quarter, 0.2 is a fifth and 0.1 is a tenth - |
| Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents | NPV-1 Know that 10 tenths are equivalent to 1 one, and that 1 is 10 times the size of 0.1 . Know that 100 hundredths are equivalent to 1 one, and that 1 is 100 times the size of 0.01 . Know that 10 hundredths are equivalent to 1 tenth, and that 0.1 is 10 times the size of 0.01 . | - Can identify and calculate $1 / 1000$ as a decimal <br> - Can identify the pattern when finding other thousandths <br> - Can compare thousandths to tenths and hundredths. |  |
| Round decimals with two decimal places to the nearest whole number and to one decimal place | NPV-3 Reason about the location of any number with up to 2 decimals places in the linear number system, including identifying the previous and next multiple of 1 and 0.1 and rounding to the nearest of each. | - Understands the rules of rounding up and down. <br> - Can apply the rules of rounding to a whole number <br> - Can apply the rules of rounding to 1 dp . <br> - Can identify which value is closer to a given number. |  |
| Read, write, order and compare numbers with up to three decimal places | NPV-2 Recognise the place value of each digit in numbers with up to 2 decimal places, and compose and decompose numbers with up to 2 | - Understands how thousandths are represented as a decimal. <br> - Can order numbers to 3dp. |  |


|  | decimal places using standard and non-standard partitioning. <br> NPV-4 Divide 1 into 2, 4, 5 and 10 equal parts, and read scales/number lines marked in units of 1 with $2,4,5$ and 10 equal parts. |  | using a bead string as a concrete resource (find me 0.1 on a bead string. What fraction of the bead sting do have you found? <br> *Apply knowledge of known fraction/decimal facts to multiples of these decimals (what fraction is the same as 0.3 ? 0.8? |
| :---: | :---: | :---: | :---: |
| Solve problems involving number up to three decimal places |  | - Can solve problems involving measure | *Problem solving using 4 operations with decimals to 3dp (link to measures) <br> *Introduce the term percentage as 'parts per |
| Recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred', and write percentages as a fraction with denominator 100, and as a decimal |  | - Understand $1 \%$ is 1 part out of 100 <br> - Can write the decimal equivalent to $1 \%$ <br> - Understand percentage as a number out of 100 . <br> - Can write percentages as a fraction with denominator 100 <br> - Can use $1 \%$ to calculate $10 \%, 5 \%, 50 \%$ and $100 \%$ | hundred' <br> * Use a beadstring and ask children to show $1 \%, 5 \%, 67 \%$, etc <br> Relate percentage to decimals and fractions 'Show me $10 \%$, what is this as a decimal and as a fraction - relate back to prior learning' *Recognise decimal equivalences for $25 \%$, $10 \%, 50 \% 5 \%$ and $1 \%$ |
| Solve problems which require knowing percentage and decimal equivalents of $\frac{1}{2}, \frac{1}{4}, \frac{1}{5}, \frac{2}{5}$, and $\frac{4}{5}$ and those fractions with a denominator of a multiple of 10 or 25 . |  | - Can use the pattern to calculate other multiples of known percentages. <br> - Has a good recall of the percentage, fraction and decimal equivalence of $\frac{1}{2}, \frac{1}{4}, \frac{1}{5}, \frac{2}{5}$, and $\frac{4}{5}$ <br> - Has a good recall of the percentage and decimal equivalence of fractions with a denominator of a multiple of 10 or 25 . | * Apply understanding of fractions, decimals and percentages to shade in sections of 100 square using set criteria <br> *Using and applying known facts. If we know $25 \%$ of a number, how can we find $75 \%$ ? If we know $10 \%$ then how can we find $30 \%$ |

Year 5 - Mathematics Intent

| Block 9 |  |  |  |
| :---: | :---: | :---: | :---: |
| Measure - Perimeter and Area |  |  |  |
| Substantive Knowledge <br> National Curriculum | Ready to Progress | Key Performance Indicators | Sequence of learning <br> Detailed in Planning Overview |
| Measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres |  | - Can divide a composite shape into rectangles and calculate the perimeter of each shape. <br> - Can recombine shapes and calculate the perimeter of shapes. <br> - Can find missing lengths of a shape if given a perimeter. | *Recap perimeter and look at the perimeter of some regular shapes <br> *Discuss finding the perimeter of regular shapes where some information is missing <br> * Look at finding the perimeter of a composite rectilinear shape by breaking it down into smaller shapes <br> * Find missing lengths of a shape if given the total perimeter <br> * Recap area and counting the squares in a shape to find its |
| Calculate and compare the area of rectangles (including squares), and including using standard units, square centimetres $\left(\mathrm{cm}^{2}\right)$ and square metres ( $m^{2}$ ) and estimate the area of irregular shapes | G-2 Compare areas and calculate the area of rectangles (including squares) using standard units. | - Can use the formula, $\mathrm{L} \times \mathrm{W}$ to calculate area. <br> - Understands why the answer is the unit squared. <br> - Can find shapes that have a set area. <br> - Can calculate area from scaled drawings | area <br> *Understand why we use the notation cm squared when recording the area of a shape <br> *Use the formula LxW to calculate the area of a shape using $\mathrm{cm}^{2}$ <br> ^use a scaled drawing to calculate the area of a shape <br> *If given the area of a shape children can suggest what the shape might look like |


| Block 10 |  |  |  |
| :---: | :---: | :---: | :---: |
| Substantive Knowledge | Statistics |  |  |
| National Curriculum | Ready to Progress | Key Performance Indicators | Sequence of learning |
| Detailed in Planning Overview |  |  |  |

## Year 5 - Mathematics Intent

| Solve comparison, sum and difference problems using information presented in a line graph | No specific Ready to Progress statements for Money but use the opportunity to consolidate prior statements as appropriate e.g NPV-4 Divide 1 into 2, 4, 5 and 10 equal parts, and read scales/number lines marked in units of 1 with 2,4,5 and 10 equal parts. | - Can answer questions that involve comparing the values between two points on a line graph e.g. When does the temperature rise the quickest? <br> - Can answer questions that involve finding the difference between two points on a line graph e.g. By how much does the temperature rise between 1 and 2 pm <br> - Can answer questions that involve finding the sum of values on a line graph e.g. How far did the lorry driver travel in | *Recap different types of data and graphs from the previous curriculum (recap continuous and discreet data) <br> *Discuss the data represented on a line graph - continuous data and children can suggest types of line graphs that we could see <br> *Give children a range of line graphs to read with a range of scales <br> *Children to discuss and interpret data from the line graphs <br> * Answer questions that involve comparing the values between two points on a line graph e.g. When does the temperature rise the quickest? <br> Answer questions that involve finding the difference between two points on a line graph e.g. By how much does the temperature rise between 1 and 2 pm <br> *Answer questions that involve finding the sum of values on a line graph e.g. How far did the lorry driver travel in total? |
| :---: | :---: | :---: | :---: |
| Complete, read and interpret information in tables, including timetables |  | - Can answer questions that involve timetables e.g. How long does the journey from Chester to Northwich take on the bus? <br> - Can answer questions linked to information presented in tables | *Children to answer questions based on timetables such as the local bus or train timetable |


| Blocks 11 and 12 |  |  |  |
| :---: | :---: | :---: | :---: |
| Substantive Knowledge | Ready to Progress | Key Performance Indicators | Sequence of learning |

## Year 5 - Mathematics Intent

| National Curriculum |  |  | Detailed in Planning Overview |
| :---: | :---: | :---: | :---: |
| Identify 3-D shapes, including cubes and other cuboids, from 2-D representations |  | - Can name 3D shapes from pictures <br> - Can identify the 3D shapes represented by 2D nets <br> - Can identify nets of open and closed cubes | *Recap 2d shapes and names and 3d shapes and names <br> *Look at the shadows of some 3d shapes -what could they be and why? <br> * Investigate the concept of a 3D shape having a 2D |
| Know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles | G-1 Compare angles, estimate and measure angles in degrees $\left({ }^{\circ}\right)$ and draw angles of a given size. | Can explain that angles are measured in degrees <br> - Can identify acute, obtuse and reflex angles <br> - Can estimate the size of acute, obtuse and reflex angles <br> - Can compare and order a set of angles | net. Model drawing around the faces of a cube to create a flat representation <br> *Given a range of nets children investigate which will and will not make a complete cube <br> *Investigate nets of cuboids <br> *Children to investigate making nets of shapes using interlocking tiles |
| Draw given angles, and measure them in degrees $\left({ }^{\circ}\right)$ | G-1 Compare angles, estimate and measure angles in degrees $\left({ }^{\circ}\right)$ and draw angles of a given size. | - Can use a protractor to measure angles accurately in degrees both on their own and within shapes <br> - Can draw given angles using a protractor | *Discuss angles and what angles are measured in <br> *Define angles - acute (less than 90 degrees) <br> Right angle (90 degrees) <br> Obtuse ( 91 degrees - 180 degrees) <br> Reflex ( 180 degrees to 360 degrees) <br> *Children to estimate what type of angle an image is |
| Identify: <br> - angles at a point and one whole turn (total $360^{\circ}$ ) <br> - angles at a point on a straight line and $1 / 2$ a turn (total $180^{\circ}$ ) <br> - other multiples of $90^{\circ}$ |  | - Can recognise that angles at a point make a whole turn and total $360^{\circ}$ <br> - Can recognise that angles on a straight line make half a turn and total $180^{\circ}$ <br> - Can recognise multiples of $90^{\circ}$ within turns <br> - Can calculate missing angles in a range of contexts | representing <br> *Children to identify types of angles in shapes <br> *Children learn how to measure angles accurately using <br> a protractor <br> *Children learn how to draw angles using a protractor <br> * Recap previous learning of 90 degrees being a quarter turn, 180 degrees being a half turn and relate |


the appropriate language, and know that the shape has not changed.

- Can describe the position of a shape after it has been translated across and up.
- Understand the difference between a congruent and similar shape.
*Discuss translation as being when a shape is moved from one position to another in a vertical or a horizontal direction on a grid
*Children translate shapes on a grid and state the finishing coordinates of the shape after it has been translated

| Blocks 15 and 16 |  |  |  |
| :---: | :---: | :---: | :---: |
| Measure - Length, Mass and Capacity |  |  |  |
| Substantive Knowledge <br> National Curriculum | Ready to Progress | Key Performance Indicators | Sequence of learning <br> Detailed in Planning Overview |
| Convert between different units of metric measure (for example, kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre) | NPV-5 Convert between units of measure, including using common decimals and fractions. | - Can use their knowledge of place value and multiplication and division by 10, 100 and 1000 to convert between standard units <br> - Can decide on the appropriate measure to record their answer <br> - Can understand the decimal notation of units of measure. | *Recap what is known about metric measures - how many g in a $\mathrm{kg}, \mathrm{ml}$ in a $\mathrm{l}, \mathrm{cm}$ in a m , etc <br> *Practice reading a range of scales for length, capacity and weight <br> * Use their understanding of the powers of 10 to talk about this using the language of fractions and decimals - a ml is $1 / 1000$ the size of a litre, a g is 0.001 the size of a kg <br> * Apply their understanding of multiplying and dividing by |
| Understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints |  | - Can convert between familiar imperial units of measure and metric measure <br> - 1 litre is approximately 2 pints (more accurately, $13 / 4$ pints) | 10, 100 and 1000 to convert between standard measures <br> * To be able to record measures as decimals <br> *Children to solve problems around comparing the weight, length or capacity of 2 objects by converting units to the same system of measurement. |



